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A formula, which includes the effects of finite nuclear masses, is derived for 
the force on a nucleus in a (possibly molecular) ion in a spatially uniform 
(possibly time dependent) electric field. 
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In 1954 Foley and Sternheimer [1] showed that for a non relativistic atomic ion 
in a stationary state, the average force on the nucleus in the presence of a static, 
spatially uniform electric field/~ is, in the fixed nucleus approximation 

(F1) = q/~ (1) 

where q is the net charge of the atomic ion. They also showed (see also [2]) that 
if one takes account of the finite mass M1 of the nucleus, then the right hand 
side of (1) is multiplied by 

M1/M (2) 

where M is the total mass of the atomic ion. 

Subsequently [3-4] the result Eq. (1) was generalized by allowing/~ to be time 
dependent.  It is one purpose of this note to further generalize by including the 
effects of finite nuclear mass. A second purpose is to broaden the scope of the 
whole discussion so as to include not just atomic ions but ions in general, i.e. 
molecular ions. 

To this end it will be convenient to use the nucleus in question as the origin of 
all internal coordinates. Thus we introduce 

Y~ = / ~  - / ~ i  (3) 

)(= (Mfl~ + ~ M~I~.) /M (4) 
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where a = 2, 3 . . . .  labels the electrons and any other nuclei and where M is now 
the total mass of the ion: M=Y.aM~+M~ (actually, as far as the formal 
discussion is concerned particle 1 could be an electron or a muon or anything 
else as could particles 2, 3 . . . .  ). Combining Eqs. (3) and (4) we then find that 

YMa2a  
a 

/~1 = 2  M (5) 

To calculate (if1) we employ Ehrenfest 's  theorem: 

d 2 
(El) = M1 ~-~ (/~1). (6) 

Using Eq. (5) this becomes 

d 2 M l d 2 ( ~  a > 
(F1) = M1 - ~  (2)  M dt 2 MaXa (7) 

which, invoking Ehrenfest 's  theorem again, this time for the center of mass 
motion, can be written as 

M1 - d 2 <Pl)--~[q~-j{~Ma2a)], (8)  

where q is now the net charge of the ion. Eq. (8) is our main result. We now 
turn to examples. 

If, with /~ time independent,  the internal part of the wave function (we will 
assume that the wave function is a product of an internal wave function and a 
center of mass wave function in so far as the spatial dependence is concerned) 
is a stationary state, then the second term on the right hand side of" Eq. (8) will 
vanish. For an atomic ion we then recover Eq. (1) with Eq. (2). Further we see 
that, with the proper  interpretation of the symbols, the same formula also applies 
to a nucleus in a molecular ion. Note however that in this case the quantum- 
mechanical averaging involves not only electronic averaging but also nuclear 
averaging, i.e. vibrational and rotational averaging. Note also that the infinite 
mass limit of the formula for (if'l) is ambiguous (what does one assume about 
the ratios of nuclear masses?). However  if we compute the average total force 
on all the nuclei then the result is evidently 

M '  q/~ (9) 
M 

where M '  is the total mass of all the nuclei, and this, in the infinite mass limit 
becomes the known [5-7] result 

q/~. (10) 

If on the other hand /~  is time dependent  then for an atomic ion Eq. (8) clearly 
yields the desired generalization of the results derived in [3-4] while for a 
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molecular ion it yields new and potentially useful relations. (For an atomic ion 
~aM~3~a = ~ Y ( a  is the negative of the dipole moment  with respect to the 
nucleus. In particular, for q = 0 if E is simple harmonic with frequency w then 
through first order in/~ 

d 2 

where a (w) is the polarizability of the atom. More generally, from Eq. (5), one 
sees that ~a M~3~ is proportional to the dipole moment  of the chosen nucleus 
with respect to the center of mass of the ion,) 

Thus far we have assumed that we have exact wave functions. To consider 
situations in which we have only approximate, variational, internal wave func- 
tions, it is useful to note that, as readily follows from the form of the internal 
Hamiltonian H 

"2 2 . 

a#b 

, ,-,qaql ~, M a  - 

the static theorem is equivalent to the vanishing of ( H  Y..,/3 _ y.a P H>. Here  of 
course/~a is the momentum canonically conjugate to X~, and q~ is the charge 
of particle a. Thus [6] a sufficient condition that the static theorem be satisfied 
by an optimal variational internal wave function is that the set of trial internal 
wave functions be invariant to a rigid displacement of the )(~. Similarly (much 
as in [3]) one finds that the time dependent  theorem will be satisfied if in addition 
the set is invariant to multiplication by exp i Y.~.~a ' 6 where 6 is an arbitrary 
vector. 
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